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Abstract

Recent advances in computational psychiatry have identified latent cognitive and perceptual

states that predispose to psychotic symptoms. Behavioral data fit to Bayesian models have

demonstrated an over-reliance on priors during perception in select samples of individuals with

hallucinations. However, the clinical utility of this observation depends on whether it reflects

static symptom risk or current symptom state. To determine whether task performance and

estimated prior weighting related to specific elements of symptom expression, a large,

heterogeneous, and deeply-phenotyped sample of hallucinators (N = 249) and non-hallucinators

(N=209) performed the Conditioned Hallucination (CH) task. CH rates were sensitive to

hallucination state, correlating with hallucination severity measures over the two days leading up

to task completion and driven by heightened reliance on past experiences (priors). To further

test this relationship, a subset of AH+ participants (N = 40) performed a repeated-measures

version of the CH task. Changes in both CH frequency and relative prior precision varied with

changes in AH frequency on follow-up. These results support the use of CH rate and prior

hyper-precision as state markers of hallucination status, potentially useful in tracking disease

development and treatment response.



Introduction

The most significant advances in medicine have come from understanding latent states that

lead to symptom expression. This has allowed for identification of different routes by which

symptoms might arise, resulting in the crystallization of disease entities based on distinct

etiologies and the emergence of prevention and treatment strategies aimed at those pathways

toward disease. Similarly, prevention, detection, and treatment of psychiatric illness depend

critically on an accurate and individualized mapping between observed symptoms, latent states,

and distal causes1.

One promising route toward identifying latent states that may drive psychiatric symptom

expression comes from computational psychiatry2–4, which provides mathematical frameworks

for understanding the typical functioning of perceptual and cognitive systems, and how specific

disturbances may lead to specific psychiatric symptoms. One such computational framework,

predictive processing theory (PPT), has proven useful in proposing ways in which various

psychotic symptoms and brain states might arise from aberrations in mechanisms involved in

learning and inference5–7. In particular, several recent studies have demonstrated the usefulness

of this approach to understanding hallucinations. Within this framework, perception is formally

described as the process of inferring the causes of one’s sensory input using the existing

internal model of one’s surroundings (priors) in addition to the available sensory evidence,

precision-weighted by the reliability of these sources8–10. Given this formulation of perception,

hallucinations--percepts in the absence of a corresponding stimulus--may arise due to

hyper-precise priors relative to the precision of incoming sensory evidence7,11.

Empirical support for this idea has mounted over recent years12. Several behavioral tasks

sensitive to relative prior precision13–16 have demonstrated a sensitivity to hallucination



propensity across clinical and non-clinical populations14,17 as well as neurological and psychiatric

disorders15. Critically, prior hyper-precision does not appear to be present in individuals with

psychosis-spectrum disorders without hallucinations17, suggesting specificity of this abnormality

to hallucinations and not psychotic illness writ large.

Despite these promising results, it remains unknown how the interaction between relative prior

hyper-precision and other cognitive and perceptual vulnerabilities may give rise to the wide

range of hallucinatory phenomena seen both clinically and in the general population.

Understanding how these vulnerabilities may confer both static and dynamic risk for

hallucinations is important for leveraging these findings toward biomarker development for

prediction of risk and treatment response. A more comprehensive understanding of the mapping

between symptomatology and these latent computational abnormalities in a large,

heterogeneous sample would be the first step toward meaningful sub-group identification and

precision treatment for hallucinations.

Here we present data from a large, heterogeneous, and deeply-phenotyped group of individuals

with unusual perceptual experiences, including those with (AH+; N=249) and without (AH-;

N=209) auditory hallucinations. Participants completed the Conditioned Hallucinations (CH)

task, which has previously been shown to be sensitive to prior hyper-precision and propensity

toward auditory hallucinations17,18. We again show that the CH task and estimated relative prior

precision are sensitive to hallucination propensity. We then extend these findings to

demonstrate a strong relationship between relative prior precision and frequency and intensity

of recent hallucinatory experiences, suggesting a role of relative prior hyper-precision as a state

marker of hallucinations.



Materials and Methods

Participants and Data Collection

Participants aged 18-65 completed a battery of demographic measures, clinical scales, and

behavioral tasks as part of the Yale Control Over Perceptual Experiences (COPE) Project

(https://www.spirit.research.yale.edu/). The study was coordinated through Yale’s instantiation of

Research Electronic Data Capture (REDCap@Yale). REDCap is a HIPAA-secure web-based

software platform designed for data capture in research studies19,20.

Recruitment was accomplished via advertising through specific partners

(https://www.spirit.research.yale.edu/partners) who work with individuals with unusual

perceptual experiences and unusual beliefs, both with and without a need for care, as well as

broader posting via Amazon Mechanical Turk and social media platforms. All procedures were

approved by the Yale University Institutional Review Board / Human Interest Committee.

Participants provided informed consent and received monetary compensation for their

participation, contingent on adequate completion of all study procedures. A screening survey

excluded those who reported cognitive, neurological, or seizure disorders or endorsed being

under the influence of recreational drugs or alcohol at participation.

Phenomenological and Clinical Battery

Participants were screened for the presence of auditory hallucinations (AH) via administration of

the screening portion of the Chicago Hallucination Assessment Tool (CHAT) by online

self-report21. This tool also provided a rough estimate of the frequency and recency of

hallucinations across modalities. AH+ participants also completed the Computerized Binary

Scale for Auditory Speech Hallucinations (cbSASH)22, the Beliefs About Voices



Questionnaire-Revised (BAVQ-R)23, the Launay-Slade Hallucination Scale-Revised

(LSHS-R)24,25, and the Yale Control Over Perceptual Experiences Scale26. All participants also

provided past psychiatric history (including medications) and completed the Peters et al

Delusion Inventory (PDI)27, the 9-item version of Raven’s Progressive Matrices28, and the

Miller-Forensic Assessment of Symptoms Test (M-FAST)29.

Auditory Conditioned Hallucinations (CH) Task

The CH task is a sensory-detection task using principles of psychometric thresholding and

Pavlovian associative learning17,18,30–33 to induce auditory hallucinations17,18. Participants press

buttons to indicate their detection of a target stimulus, a 1-kHz pure tone embedded in 70-dB

SPL white noise and presented concurrently with a flashed white checkerboard on a black

background (Fig. 1a).

The online CH task was implemented via React (https://reactjs.org/), using the same structure

as previous versions. Participants used the q and e keys to indicate ‘yes’ or ‘no’ for detection of

the tone, and held these keys down to indicate confidence in their responses using a color

visual analog scale from “Unsure” (1) to “Certain” (5). Participant non-response triggered a trial

repeat. 80% accuracy on two short practice sessions was required before task initiation.

Thresholding was accomplished via two 40-trial interleaved staircases with step sizes computed

by QUEST, a maximum-likelihood based procedure adapted to JavaScript from Psychtoolbox

3.017,34. Individual 25% and 50% detection likelihoods were calculated with a psychometric

function fitted to this 75% likelihood of detection data35 (Fig. 1b, left). Over 12 blocks of 30

pseudorandomized trials, the likelihood of tone presentation at previously-computed intensities

decreased non-linearly, while the likelihood of sub-threshold target presentation and no-tone

trials increased (Fig 1c, right). We calculated detection probability for each trial type as the



proportion of all trials for which participants indicated ‘Yes’ for target stimulus detection at that

stimulus intensity. Trials in which participants signaled detection despite absence of the target

stimulus were reported as conditioned hallucination trials.

Sample Selection

A sample of 458 participants from the Yale COPE Project were selected after quality control

procedures and demographic matching (see Supplemental Methods for details). Participants

with AH (AH+) and without AH (AH-) were identified by CHAT-AH score. Any endorsement of

CHAT-AH items from 4 through 8 was considered as AH+ (Table S1)36. A random sample,

balanced in age, sex, and total score on the Raven’s progressive matrices between the AH+

and AH- groups, was selected for between-group analyses. The AH+ group was further divided

based on the frequency of the hallucinations reported (Daily, Weekly, Monthly or Less), based

on the highest frequency endorsed for any CHAT-AH items 4 through 7.

Hierarchical Gaussian Filter (HGF) Analysis

To identify the latent states driving behavior on the CH Task, we fitted parameters of a

three-tiered Hierarchical Gaussian Filter (HGF) using trial-wise data on stimulus intensity and

responses37,38. Given the heterogeneity of hardware systems utilized in this online sample,

empirically-derived grand mean detection rates at each condition were used as stimulus

intensity inputs. The HGF is a computational Bayesian hierarchical model of learning and

inference in a changing environment39. This model has been adapted for CH data17,18 (Fig. 3a).

For this task, inference on the first level (X1) represents trial-wise participant belief in the

presence of the target given the visual stimulus, inference on the second level (X2) models the

belief that the visual stimulus predicts the target auditory stimulus, and inference on the third



level (X3) is the participant’s estimated volatility of the contingency between the visual and target

stimuli (i.e., volatility of X2). µ refers to the means of inferred beliefs about X1-X3, 𝜈 to individual

subjects’ relative weighting of priors and sensory input, and ω2 and ω3 to belief evolution rates

on levels 2 and 3. Posterior perceptual beliefs about the presence of the target stimulus given

available sensory evidence are fed into a response model, which estimates the likelihood of a

response taking into account decision noise (β-1). Additional details of HGF implementation

using CH task data, including comparison of multiple models, are included in the Supplement

and have been published elsewhere17,18.  Relevant model code has been made freely available

as part of the TAPAS computational toolbox (github.com/translationalneuromodeling/tapas). As

was done in prior work, different HGF models were tested to ensure suitability of the model

employed (Fig. S1).

Re-test sample and procedures

In order to assess for changes in task performance that may relate to changes in clinical status,

all COPE participants who completed initial assessments were invited to complete an additional

follow-up assessment. Final re-test sample characteristics are outlined in Table S2. Participants

repeated CHAT screening questions to assess for changes in hallucination state, in addition to

the COPE scale, BAVQ-R, LSHS-R, and the CH task. To minimize transfer of prior learning,

follow-up versions of the CH task used novel stimulus pairs, as cross-modal perceptual learning

tends not to transfer across stimulus sets40–42. To allow for re-test at multiple time points per

participant, stimulus pairs depended on time elapsed since initial assessment, although only

one follow-up point was used for analysis: red horizontal stripes were used for individuals at first

follow-up (<8 months after initial assessment); 45° blue stripes were used at second follow-up

(>8 months after first assessment). Stripes were tested for matched luminance, complexity, and



contrasts compared to the original stimulus set. Similarly, auditory stimuli used tones of 1250 Hz

(first follow-up) and 1500 Hz (second follow-up). Otherwise, the structure and procedure of the

task was as outlined above in the original task. For purposes of quantifying changes in

hallucination frequency on follow-up assessment, hallucination frequency categories (e.g.,

“Once per week”) were converted to minimum occurrence rates over days (e.g., 1/7). To avoid

divide-by-zero errors, relative changes were calculated as log ratios of final rates over initial

rates.

Statistical Analysis

Differences between AH- and AH+ groups were computed using two-sample t-tests and

Wilcoxon tests as appropriate. For comparisons of means across frequency groups, one-way

ANOVA was used. Correlations were computed using Pearson correlations. All statistical

analyses were completed using the R packages tableone, plotrix, car, nlme and afex performed

with RStudio version 1.2.5001 (http://www.rstudio.com/).

Results

Sample Characteristics

Table 1 reports the summary of the demographic and clinical features of our final balanced

sample. The AH+ group (N=249) obtained significantly higher scores in propensity for

hallucinations (LSHS) (T135=10.0, p<0.001) and delusions (PDI) (T426=14.5, p<2.2x10-16) than the

AH- group (N=209). AH+ also reported a higher frequency of psychosis-spectrum illness

(𝛘1
2=20.4, p<0.001), mental illness in general (𝛘1

2=35.1, p<0.001), and used more psychiatric



medication (𝛘1
2=29.3, p<0.001) than AH-. The groups did not differ significantly on age, sex, or

reported race.

Conditioned hallucination rates and confidence are higher in AH+

AH+ and AH- groups did not differ on the QUEST-derived threshold (Fig. 2a), but AH+

participants were more likely to report CH (T450=2.71, p=6.9x10-3; Fig. 2b). This difference

survived after controlling for the presence of self-reported psychotic-spectrum illness (by

ANCOVA; F1,455=1, p=6.2x10-3). Significant differences between AH+ and AH- groups emerged

early during the fourth block of the experiment, at the twenty-sixth presentation of a no-tone trial

(Fig. 2d). Maximal statistical difference was noted at trial 62 (T455=3.27, p=1.2x10-3). Groups did

not differ significantly on the probability of saying yes for any other conditions (25% detection,

50% detection, and 75% detection; Fig. S2).

Pertaining to confidence ratings, there was a significant interaction between the answer choice

and condition (F6,4966=529, p=2x10-16): participants were more confident reporting detection and

less confident reporting non-detection with increasing target loudness. There was a significant

interaction between hallucination status and condition (F3,4966=2.7, p=0.045). Participants with

hallucinations had higher confidence in reporting conditioned hallucinations (T427=2.23,

p=0.026).

Conditioned hallucination rates and confidence ratings scale with current frequency of auditory

hallucinations

Probability of reporting CH varied significantly according to the frequency of reported

hallucinations (Fig. 2f; F3,445=7.68, p=5.0x10-3; r445=0.13, p=6.0x10-3). Again, significant

differences emerged early (no-tone trial 28) and hit their maximum again at no-tone trial 62



(F3,445 =12.1 ; p=5.9x10-3; Fig. 2h). Post-hoc differences were evident between Daily and AH-

(T62=2.14, p=0.036) as well as Monthly and AH- (T304=2.15, p=0.032) groups. Most AH+

participants (n=220) also completed detailed phenomenological surveys on their hallucinations.

Within this group, higher CH were correlated with hallucination frequency within the last two

days (r218=0.13, p=0.042), and not with the frequency of hallucinations at the ‘worst time’ in their

history (p=0.12).

Confidence ratings in reporting CH were significantly different between frequency groups

(F3,435=4.98, p=0.026). Post-hoc analyses showed that the difference between Daily and AH-

was significant  (T70=4.98, p=0.021).

Relative prior precision is higher in those who hallucinate and is associated with frequency of

auditory hallucinations

In order to evaluate latent factors driving performance on the CH task, we used participants’

behavioral data to fit a three-tiered model of perception, the Hierarchical Gaussian Filter 37,38,

which we have done in past work17,18 (Fig. 3a). Groups differed in the relative prior precision

parameter (ν) (T451=2.3, p=0.021) (Fig. 3c) but not in belief trajectories (X1-X3) (Fig. 3b) or

decision noise (β-1) (Fig. 3c).

The relative prior precision parameter (ν) was found to vary according to frequency of auditory

hallucinations (F1,445=7.42, p=6.6x10-3; r445=0.13, p =7.0x10-3). Conversely, there was no

difference in decision noise (β-1) between groups.

Changes in conditioned hallucinations and prior precision vary with changes in auditory

hallucination frequency.



A subset of participants (N = 40; see Table 1 for sample characteristics) completed a

repeated-measures version of the CH task several months (mean±SD = 375.54 ± 113.99 days)

after initial performance. Those who reported never having AH at both baseline and follow-up

assessments (N = 6) were excluded from final analyses. As shown in Figure 4a, those who

exhibited an increase in hallucination frequency on follow-up showed higher rates of conditioned

hallucinations than those with decreased hallucination frequency (p = 0.026, r = 0.377), while

those with no change in frequency exhibited no change in conditioned hallucination rate.

Correlation analysis corroborated this relationship: changes in AH frequency varied with both

changes in conditioned hallucination rate (Fig. 4b; F1,28 = 5.363, p= 0.028, adjusted R2= 0.130)

and changes in relative prior precision (Fig. 4c; F1,28 = 4.669, p = 0.039, adjusted R2 = 0.112),

adjusted for baseline rates. Consistent with Figure 3, changes in conditioned hallucination rate

were tracked by changes in relative prior precision (Fig. 4d; F1,33 = 17.97, p = 1.7 x 10-4,

adjusted R2 = 0.330).

Discussion

In a large, heterogeneous sample of individuals with hallucinations, we have provided evidence

for a link between conditioned hallucinations, relative prior precision, and recent hallucination

frequency. Previous work highlights the specificity of relative prior precision to auditory

hallucinations in small, highly-selected sub-groups of people with frequent experiences of

hearing voices and distinctly clear acoustic qualities14,17 or small groups of individuals with a

range of hallucination severity within specific psychiatric16,18 and neurological15 disease

categories. Inclusion of individuals with a broad range of phenomenological characteristics, daily

functioning, and clinical needs allowed us to examine the performance data and model

parameter estimates for relationships to each of these quantities. As we have done in prior



work17, we relate auditory conditioned hallucination rates to the presence of auditory

hallucinations in our sample. Rates of CH were lower in this sample compared to previous

highly-selected samples; however, examining CH rates and estimated relative prior precision in

sub-groups of individuals with daily hallucinations (Figs. 2, 3) yields estimates that closely

approximate previously-reported rates17.

Relationships between prior precision, conditioned hallucinations, and frequency of

hallucinations are evident throughout the data set: CH rates and prior precision are higher in

high-frequency hallucinating groups on cross-sectional analysis (Figs. 2 and 3), and track with

changes in frequency on follow-up even after adjustment for baseline frequency (Fig. 4).  These

findings highlight sensitivity of our measures to hallucination state, rather than static, traitlike

propensities toward hallucinatory perception. If our measures of interest are capable of

changing with hallucination state, they may be ideal targets for objective tracking of clinical

trajectories and treatment response. The fact that these measures may be derived remotely are

also particularly promising for translation to clinical settings: despite wide variance in software

and hardware implementation as well as stimulus set (see Figs. S3-S5) and a highly

heterogeneous sample, results closely replicated those previously reported and reflected

hallucination state within a clinically-relevant time period of several days. This may be largely

due to screening for consistency of clinical responses as well as our paradigm’s ability to base

stimulus presentation on individually-defined participant thresholds using the QUEST procedure,

which in principle is capable of washing out non-participant-related variance43. Further validity

may be obtained from direct observation of performance, although post-hoc performance

metrics serve as a convenient way of identifying poor performance unrelated to

psychopathology.



Our results establish a foundation for exploring computationally-derived biomarkers in

psychiatry4,44,45. While markers of traitlike susceptibility may be useful in identifying static

predisposition toward illness, state biomarkers are better able to track dynamic changes in

symptomatology, capturing clinical worsening and clinical improvement in response to

treatment45,46. An apt analogy may be taken from Internal Medicine, where family history of Type

II Diabetes Mellitus may represent a static risk factor for disease development, while fasting

glucose and hemoglobin A1c laboratory values measure dynamic risk, provide diagnostic

thresholds for disease development, and mark response to treatment. State-sensitive markers

are most useful in settings where disease expression is dynamic, during disease development,

response to treatment, or in predicting relapse. Thus, conditioned hallucination rates and prior

hyper-precision may be most useful in tracking progression and predicting conversion in those

at clinical high risk for psychosis (CHR-P)18,47. It also opens up the intriguing possibility of

tracking symptom susceptibility prior to the onset of any symptoms whatsoever, among those

who already exhibit a static risk for disease development48. This latter approach would allow for

an even more nuanced understanding of pathophysiology, where the interplay between static

risk factors (such as gene expression) lead to a worsening of dynamic, state-sensitive markers

for symptom development.

From the perspective of computational neuroscience, the fact that relative prior hyper-precision

can vary significantly over time yields important clues as to its neural instantations. Although

well-established changes in synaptic density49, cortical morphology50–52, and white matter

integrity53 confer psychosis risk, it is unlikely that these processes directly drive prior

hyper-precision on a time scale necessary for the changes seen here. Rather, these factors may

predispose to dynamics in which prior precision is heightened absolutely or relative to degraded

and unreliable sensory evidence and is encoded by more dynamic neural states. A formulation



of the neural processes underlying Bayesian inference might necessarily be tied to more

dynamic neural processes like phasic neuromodulator release5,7,54. This is largely consistent

with recent findings regarding the precision of priors as related to dopamine synthesis

capacity16, and, conversely, the reliance of sensory evidence precision upon cholinergic

modulation55. The degree to which these processes may also be related to more dynamic

aspects of glutamatergic neurotransmission and excitation / inhibition balance56 remains to be

seen, although these factors are clearly at play in psychosis development more broadly. Recent

evidence explicitly links disinhibition of pyramidal cells auditory cortex to perceptual

abnormalities in early psychosis57, and there may plausibly be a role for several

neuromodulatory systems in dynamic relation of this process to the perceptual processes we

describe here.

The identification of a computationally-driven method of identifying risk factors in individuals

with hallucinations is the first step toward individualized risk and treatment prediction based on

distinct etiologies. This development intentionally mirrors efforts to develop behavioral

biomarkers of mental health disorders58.  The current work extends these efforts by identifying

parameters within a specific, formalized model of perception that may lead to hallucination

expression. We anticipate that subgroup identification based upon such a formal system may

take advantage of emerging knowledge of the neural16,17 and biochemical55 underpinnings of

prior precision to identify biologically-based interventions most likely to alter the

pathophysiological processes leading to initial symptom expression.



Tables

Table 1. Sample demographic and clinical characteristics of original and follow-up samples.

AH- AH+ p Follow-up

n 209 249 40

Age (mean (SD)) 37.78 (10.95) 38.17 (13.75) 0.741 39.5 (15.81)

Total LSHS Score(mean (SD)) 5.91 (6.12) 16.28 (9.38) <0.001 11.18 (11.07)

Total PDI Score(mean (SD)) 1.96 (2.65) 6.63 (4.17) <0.001 6.18 (4.67)

Self Report, Mental Illness
n(%) 18 (10.2) 88 (36.1) <0.001 15 (37.5)

Race n(%) 0.384

American Indian/Alaskan Native 5 (2.4) 2 (0.8) 0 (0.0)

Asian 19 (9.1) 28 (11.2) 7 (17.5)

Native Hawaiian or Other Pacific
Islander 1 (0.5) 2 (0.8) 0 (0.0)

Black or African American 6 (2.9) 8 (3.2) 0 (0.0)

White 164 (78.5) 185 (74.3) 30 (0.75)

More than one race 7 (3.3) 18 (7.2) 3 (7.5)

Unknown/Prefer not to say 7 (3.3) 6 (2.4) 0 (0.0)

Sex
F n(%) 121 (57.9) 166 (66.7) 0.066 28 (70.0)

Current Medication Use
n(%) 10 (4.8) 58 (23.3) <0.001 9 (22.5)

Self Report, Psychosis Spectrum Illness
n(%) 1 (0.5) 28 (11.2) <0.001 3 (7.50)

Total Raven Score (out of 9)
(mean (SD)) 6.36 (1.69) 6.07 (1.83) 0.079 5.00 (0.41)



Figure Legends

Figure 1. Auditory Conditioned Hallucinations (CH) Task Structure. a. Visual and auditory
stimuli and task structure. Trials consisted of simultaneous presentation of a 1000-Hz tone
embedded in white noise and a visual checkerboard. b. We estimated individual psychometric
curves for tone detection (left) and then systematically varied stimulus intensity over 12 blocks
of 30 conditioning trials. Threshold tones were more likely early, and absent tones were more
likely later (right).

Figure 2. Behavioral Results. a. Calculated thresholds for tone detection were similar to those
previously reported 17,18 and did not differ between hallucinating (AH+) and non-hallucinating
(AH-) groups. b. Probability of reporting CH was significantly higher in AH+ than in AH- groups.
c. Confidence in reporting CH was also higher in AH+ than in AH- groups. d. Trial-wise analysis
of the emergence of behavioral effects demonstrated early differences in means that became
significant in experimental block 4 and reached their maximum in early block 7 of 12. AH+ was
divided into three groups based on reported hallucination frequency: Daily (N=49), Weekly
(N=43), and Monthly or Less (N=146). Results parsed by frequency of clinical hallucinations
demonstrated similar lack of differences in threshold (e), but showed that probability of (f) and
confidence in (g) reporting CH differed significantly by frequency of voice-hearing. h.
Emergence of behavioral effects showed a similar profile to group-wise effects in panel d and
means effects in panel f.

Figure 3. Hierarchical Gaussian Filter (HGF) Analysis. a. HGF model, mapping the
combination of latent states (e.g., trajectories X1-X3, relative prior precision v, inverse decision
temperature / decision noise 𝜷-1, evolution rates ω and 𝜽) to recorded responses, taking into
account trial-wise stimulus strength (U). The first level (X1) represents the target tone’s presence
on trial t. The second level (X2) represents the contingency between the visual and auditory
stimuli. The third level (X3) represents the volatility of the relationship between the visual and
auditory stimuli over the course of the experiment. Critically, responses are modelled allowing
for individual variation in weighting between sensory evidence and perceptual beliefs
(parameter ν). b-g. Belief trajectories do not differ between AH+ and AH- groups at any level
(b), nor did decision noise (d), whereas prior precision was greater in AH+ than in AH- (c). A
similar pattern of results was seen when participants were divided into frequency groups, which
did not differ in belief trajectories (e) or decision noise (g). By contrast, relative prior precision (f)
scaled with hallucination frequency.

Figure 4. Changes in conditioned hallucinations and prior precision vary with changes in
auditory hallucination frequency. a. In a sub-sample of AH+ participants who performed a
repeated-measures version of the CH task again after several months, those with an increase in
hallucination frequency showed a higher rate of conditioned hallucinations than those with a
decrease, while those without a change in frequency demonstrated no change in conditioned
hallucination rate. b-d. Correlations demonstrating both conditioned hallucinations rate (b) and
relative prior precision (c) track with changes in AH frequency on follow-up, and that changes
conditioned hallucinations rate are attributable to changes in prior precision (d). *, p < 0.05.
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Supplemental Materials 

Table S1. Questions from CHAT-AH. Bolded questions were used to assign participants to the 
AH+ group. 

     CHAT-AH Questions 

1. Have you ever thought you heard someone call your name, but then realized you must 
have been mistaken? 

2. Have you ever heard your phone ringing, but then realized the phone hadn't actually 
rung? 

3. Do you ever hear strange noises when you are falling asleep or waking up in the 
morning? 

4. What about hearing music or other noises that other people around you did not 
seem to hear? 

5. Have you ever had an experience where you heard things, such as loud noises, 
voices talking, or people whispering, that other people could not hear? 

6. Have you ever been told that you are hearing things that are not real or are not 
really there? 

7. Have you ever had an auditory hallucination? 

8. Has a doctor or family member ever told you that you have had an auditory 
hallucination? 

 
 

 

 

 

 

 

 

 

 



 

 

 

Table S2. Participants based on hallucination status, before demographic matching. 

 

 AH- AH+ p 

n 239 289   

Age (mean (SD)) 37.90 (10.80) 38.73 (13.58) 0.448 

Total LSHS Score(mean (SD)) 5.60 (5.94) 16.39 (9.14) <0.001 

Total PDI Score(mean (SD)) 1.78 (2.55) 6.54 (4.08) <0.001 

Self-Reported Mental Illness n(%) 19 (9.4) 99 (35.0) <0.001 

Race n(%)     0.223 

American Indian/Alaskan Native 5 (2.1) 2 (0.7)   

Asian 22 (9.2) 30 (10.4)   

Native Hawaiian or Other Pacific Islander 1 (0.4) 2 (0.7)   

Black or African American 6 (2.5) 13 (4.5)   

White 190 (79.5) 215 (74.4)   

More than one race 8 (3.3) 21 (7.3)   

Unknown/Prefer not to say 7 (2.9) 6 (2.1)   

Sex F n(%) 121 (50.6) 206 (71.3) <0.001 

Current Medication Use 
n(%) 10 (4.2) 68 (23.5) <0.001 

Self Report, Psychosis Spectrum Illness  
n(%) 1 (0.4) 32 (11.1) <0.001 

Total Raven Score (out of 9) 
 (mean (SD)) 6.58 (1.70) 6.02 (1.78) <0.001 

 

 



 

 

Figure S1. Model comparison for three HGF iterations. Three versions of the HGF were 
tested for overall fit to the data. Two structural variants of the HGF were tested--the Obs2 
variant (see Fig. 3) previously published and the Obs3 variant, specifically meant to identify if 
prior precision may be dynamically linked to volatility estimates on any given trial. Stimulus 
strength data used for fitting were either the expected value or the empirically-determined mean 
response values for condition. Fit quality was determined by the number of identical responses 
produced by data simulation and model inversion (a) and Bayesian model selection (b). The 
Obs2 model using empirically-derived grand mean responses performed best on both metrics. 

 

Figure S2. Mean scores of groups on each task condition. a. AH+ (blue) and AH- group did 
not differ on any condition except the No Tone Condition (statistics as reported in Figure 2). b. 
Similarly, frequency groups (Daily, Weekly, Monthly or Less, Never, left to right, colors as noted 
in Fig. 2) did not differ on conditions other than the No-Tone condition. 



 

 

 

Figure S3. QUEST Performance. a. QUEST converged appropriately on threshold values 
according to participant responses. Threshold was not affected by operating system (b) nor 
participant sex (c). 



 

 

 

Figure S4. Participant responses and audio hardware. Probability of reporting tone detection 
at the No-Tone and 75% Likelihood of Detection conditions did not differ by estimated 
headphone price (a), structure (b), communication type (c), or presence or absence of noise-
reducing functionality (d).   



 

 

 

 

Figure S5. No significant differences in likelihood of reporting the target tone existed between 
CH task versions. 

 

 

  



 

 

Supplemental Methods 

Quality Control - Clinical and Demographic Data 

Quality and accuracy of demographic and clinical data were accomplished via a series of 

automated checks. Participants were de-facto excluded for reported age over 65 (N=3) having a 

seizure-related disorder, and having a neurological disorder that would affect their cognitive 

abilities. Participants were excluded for inability to prove unique identity, which was detected via 

a combination of internet-protocol (IP) address tracking and short-message service (SMS)-

based two-factor authentication (N=20).  

Internal consistency of symptom endorsement and low likelihood of malingering were ensured 

using M-FAST consistency and malingering flags 59,60 as well as malingering checks built into 

the cbSASH 22,61. Participants flagged for any reason were subject to one-on-one interviews with 

a clinician (author BQ) to ensure distinct identity, clarity of responses, and data integrity prior to 

compensation and data inclusion. Of those flagged (N=162 ), 101 were included, and 61 failed 

to comply with the required interview. 

Quality Control - Task Performance 

Online perceptual experiments may be impacted by differences in stimulus presentation across 

multiple different hardware and operating system configurations. Several measures were taken 

to ensure these differences were minimized to the greatest degree possible.   

First, to minimize the impact of internet connectivity speed on stimulus presentation and 

response timing, the experiment was built for browser-based stimulus presentation and 

response gathering. Thus, all timing-sensitive activities were executed client-side and then 

communicated back to the server at experiment completion.  



 

 

Second, we took the position that differences between presentation configuration systems could 

be minimized by controlling auditory system configuration to the greatest degree possible and 

then ensuring that these configurations were operable using participant behavior. Participants 

were instructed to keep their screen brightness and system volumes at maximum levels 

throughout the experiments and to wear headphones. To ensure this, the participants were 

required to complete two qualifying tasks sensitive to these parameters. The qualifying tasks 

were created through labjs (https://lab.js.org/), hosted on the Powers laboratory server, and 

integrated with REDCap to link to the clinical and demographic data obtained. The auditory 

qualifying task asked participants to identify the quietest auditory stimulus from a sequence of 

three tones, and uses wave interference phenomena to make this task nearly impossible 

without the use of headphones 62. The visual qualifying task was meant to ensure that 

participants had monitor brightness and contrast at optimal levels for performance (i.e., system 

maximum). This task asked participants to identify a shape that minimally differed in hue from 

the surrounding color, such that a high level of screen brightness was required to correctly 

identify the shape. Both tasks were considered successfully completed at 80% accuracy. 

Third, the structure of the ACH task itself ensured target stimulus intensity would be based on 

participant response, thus controlling for differences in hardware that may have otherwise been 

confounding factors across auditory hardware configurations. Because the ACH task required 

individual thresholding, all stimulus strengths for the main experiment were defined by 

participant performance on their individual hardware configuration, again limiting heterogeneity 

that could contribute to differences in task performance. Initial QUEST parameters were derived 

empirically from data acquired from several participants in person in the laboratory, across a 

number of hardware configurations and systems. Operating system and browser data were 

acquired automatically via the task web application, and additional details regarding the type of 

headphones, computer, and monitor being used were acquired by participant report. After 



 

 

completion of the experiment, in order to determine whether hardware differences impacted 

behavioral performance on the ACH task, we analyzed threshold and detection rates across 

operating systems and a range of hardware characteristics, including type of headphone (i.e., 

circumaural vs. in-ear) and price point. Analysis of threshold and reported detection at the 75% 

condition did not differ across any of the hardware or software configurations tested (Fig. S3). 

Lastly, we ensured quality of data after participant completion, using participant behavior itself. If 

participants are able to hear the target tone, understand the task instructions, and are attending 

to its performance, all behavior should conform to certain patterns: 1) detection rates at the 

threshold condition should be greater than chance; and 2) detection rates should increase as 

stimulus intensities increase. Failure to exhibit these features could be caused by poor 

thresholding, hardware malfunction, or participant inattention. We administered quality control 

tests to the data collected, ensuring that participants: 1) detected the estimated threshold (75%) 

stimulus at least 55% (greater than chance) in the first block of the main experiment; and 2) 

exhibited a positive relationship between stimulus intensity and likelihood of stimulus detection 

across the experiment by linear regression, corresponding to the relationship predicted by initial 

QUEST-based modeling of individual psychometric curves. These criteria were selected to 

ensure threshold estimates were accurate (criterion #1) and responses corresponded to 

stimulus strength and were not random (criterion #2). They also had the added feature of being 

insensitive to the main performance metric of interest (i.e., reported detection at the no-tone 

condition). If these criteria were not met, participants were asked to repeat the qualifying tasks 

and the ACH task in their entirety (n=18). Out of the 617 total participants who completed the 

ACH task online and were included after identity and consistency checks, 583 participants 

passed first-pass criteria for successful task completion, including those who were asked to re-

do the tasks after not passing the first time.   



 

 

From this sample, prior to group-level analysis, reported overall detection rates outliers (criterion 

< Q1 - 1.5 * IQR or > Q3 + 1.5 * IQR) (N=8) and linear regression coefficient outliers (criterion > 

2 SDs from mean) (N=41). During HGF analysis, participants with extremely small changes in 

the X3 trajectories in the HGF model were also removed (N=6). 

HGF Model Comparison 

We tested three implementations of the HGF, 1) using target detection rates for the 25,50,and 

75 conditions, 2) with empirically-determined detection rates, and 3) a novel HGF iteration 

where prior precision is directly tied to volatility estimates. All implementations were inverted to 

produce synthetic response data based on fitted model parameters. Because randomness is 

built into the model, fitted participant models were inverted 10,000 times each and mean 

accuracy of simulated responses calculated by comparison against observed responses. We 

compared the simulated responses were then compared to observed behavioral responses, and 

found that the 2nd iteration of the model performed better at predicting observed data (stats). 

This conclusion was also supported by Bayesian Model Comparison of the two model iterations 

(stats) (S2). 

Simulated responses did not differ significantly from observed responses across any task 

conditions, indicating that model parameters were capable of recapitulating the behavioral data 

observed. 
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